https://raw.githubusercontent.com/MatthewReid854/reliability/master/docs/images/logo.png

Fit_Loglogistic_2P

class reliability.Fitters.Fit_Loglogistic_2P(failures=None, right_censored=None, show_probability_plot=True, print_results=True, CI=0.95, percentiles=None, CI_type='time', method='MLE', optimizer=None, **kwargs)

Fits a 2-parameter Loglogistic distribution (alpha,beta) to the data provided.

Inputs: failures - an array or list of failure data right_censored - an array or list of right censored data show_probability_plot - True/False. Defaults to True. print_results - True/False. Defaults to True. Prints a dataframe of the point estimate, standard error, Lower CI and Upper CI for each parameter. method - ‘MLE’ (maximum likelihood estimation), ‘LS’ (least squares estimation), ‘RRX’ (Rank regression on X), ‘RRY’ (Rank regression on Y). LS will perform both RRX and RRY and return the better one. Default is ‘MLE’. optimizer - ‘L-BFGS-B’, ‘TNC’, or ‘powell’. These are all bound constrained methods. If the bounded method fails, nelder-mead will be used. If nelder-mead fails then the initial guess will be returned with a warning. For more information on optimizers see https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize CI - confidence interval for estimating confidence limits on parameters. Must be between 0 and 1. Default is 0.95 for 95% CI. CI_type - time, reliability, None. Default is time. This is the confidence bounds on time or on reliability. Use None to turn off the confidence intervals. percentiles - percentiles to produce a table of percentiles failed with lower, point, and upper estimates. Default is None which results in no output. True or ‘auto’ will use default array [1, 5, 10,…, 95, 99]. If an array or list is specified then it will be used instead of the default array. kwargs are accepted for the probability plot (eg. linestyle, label, color)

outputs: alpha - the fitted Loglogistic_2P alpha parameter beta - the fitted Loglogistic_2P beta parameter loglik - Log Likelihood (as used in Minitab and Reliasoft) loglik2 - Log Likelihood * -2 (as used in JMP Pro) AICc - Akaike Information Criterion corrected BIC - Bayesian Information Criterion AD - the Anderson Darling (corrected) statistic (as reported by Minitab) distribution - a Loglogistic_Distribution object with the parameters of the fitted distribution alpha_SE - the standard error (sqrt(variance)) of the parameter beta_SE - the standard error (sqrt(variance)) of the parameter Cov_alpha_beta - the covariance between the parameters alpha_upper - the upper CI estimate of the parameter alpha_lower - the lower CI estimate of the parameter beta_upper - the upper CI estimate of the parameter beta_lower - the lower CI estimate of the parameter results - a dataframe of the results (point estimate, standard error, Lower CI and Upper CI for each parameter) goodness_of_fit - a dataframe of the goodness of fit values (Log-likelihood, AICc, BIC, AD). percentiles - a dataframe of the percentiles with bounds on time. This is only produced if percentiles is ‘auto’ or a list or array. Since percentiles defaults to None, this output is not normally produced. probability_plot - the axes handle for the probability plot (only returned if show_probability_plot = True)

static LL(params, T_f, T_rc)
static logR(t, a, b)
static logf(t, a, b)